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ABSTRACT

(Distribution Limitation Statement B)

An experimental and analytical investigation has been conducted to
determine if a moving pressure source can drive a fracture parallel to
a free surface. The research was conducted to determine the technical
feasibility of a hard-rock mining technique using a high-energy electron
beam to create the moving pressure source. By controlling the
electron beam sweep orientation and sweep velocity across a rock face,
a minimum-energy rock-breaking procedure can be envisioned. The two-
dimensional analytical technique used could not simulate fracture
branching phenomena. However, the analysis of the dynamic stress
field produced by a programmed straight fracture did indicate that
branch fractures would occur in the region of the pressure source.

If these branch fractures were subsequently pressurized, it might

be possible to propagate the fracture parallel to the free surface.
The experimental investigations showed 1) that slowing the detonation
velocity does cause different fracture characteristics but does not
necessarily increase the amount of damage; 2) that fracture always
occurred to some extent directly below the line of detonation
(perpendicular to the free surface) where pressure was applied;

3) that explosive detonating cord probably cannot be used to simulate
a high energy electron beam; and 4) that a ripple type detonation
will not produce sufficient energy on the surface of the test
specimen. The detonating cord had to be applied in a snaked

geometry on the surface to provide the slow phase velo~ities and

the high energy densities. Some correlatioir between experiment

and analysis can be made in the branch fracture pattcrn and the

damage on the fracture initiation surface.
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SECTION I

INTRODUCTION

Current methods for mining hard rock generally require drilling,
loading, stemming, blasting and mucking operations. Large rotary cutting
heads are also used to drill horizontal and vertical shafts in hard rock.
These conventional techriques are not efficient in terms of total energy
expended in the mining operation. It has been postulated that the
creation and propagation of fractures in a controlled manner could
utilize energy more efficiently and yield large mined tonnage rates.

Several studies (Reference 1, 2, and 3) have shown that the
theoretical maximum velocity of a straight running tensile fracture is
approximately 0.39C; for an ideal, homogeneous, isotropic material.

Real materials will exhibit terminal velocities somewhat lower than this
value (Reference 4, 5) because the inhomogeneties and anisotropies in
the material will absorb some of the strain energy, thereby reducing

the energy available to maintain the theoretical terminal velocity.

The terminal fracture velocity is the maximum velccity at which the strain
energy will be transported to the region surrounding the fracture tip

and result in a stress configuration which is sympathetic to fracture
propagation in a straight line. If a sufficient amount of energy can be
supplied to the fracture surfaces at a velocity equal to the terminal
velocity, it may be possible to break rock using a minimum energy.

If the energy was applied at too low a velocity, energy around the crack
would accumulate in an unwanted manner and be dissipated without breaking

much rock. On the other hand, if energy was applied too fast, the energy
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would not be supplied correctly to the region around the tip and the
resulting stress field would not allow sympathetic propagation of the
crack in the desired direction.

A high.energy electron beam can be used to produce a moving pressure
source in the fracture surfaces behind a moving fracture tip. If enough
power is directed toward a rock surface, an ablation of the rock will result
in ablation gas pressures sufficient to cause the rock to fracture. With
the electron beam, the power can be directed locally where fractuie is
required and not be distributed over the rock volume. Under these
conditions, the energy requirements to break a unit mass of rock from the
face are small compared to conventional rock breaking techniques. Because
the power source supplies energy at a high rate, the electron beam can
be phased to provide the energy at an optimum fracture velocity and produce
large tonnages of rock from a face per unit time.

To properly utilize the created fractures, the moving pressure
source will have to move parallel to a free surface. The driven fracture
would then break off rock between the moving electron beam and the free
surface through a proper choice of beam path, velocity and energy.

The feasibility of this concept is the subject of this report.

The results of the analytical and experimental investigation are given.
Since an electron beam of sufficient power was not available for the
research, explosive Jdetonating cord was used experimentally to simulate the

electron beam generated pressure source.

e T R e A T - R S e e g

-




SECTION II

METHOD

A. INTRODUCTION

The research on the electron beam mining technique was performed
using both analytical and experimental techniques. Since continuous
wave high-energy electron beams were not available and funding for the
use of a high-cnergy electron beam was not included for this research,
explosives were applied to simulate the moving pressure source.

B. ANALYTICAL PROCEDURE

A two-dimensional elastic hydrocode was applied to analyze the
pressure-driven fracture. A complete description of the hydrocode and
the difference forms are given in Reference 6. This code has been
used to simulate dynamic fracture for earthquake source function studies,
some examples of this research are given in References 1, 7, and 8.

Some code development was performed to simulate the application of the
eiectron beam moving pressure source to the elastic code. The shape

of the pressure profile in the fracture surfaces is shown in Figure 1.

p——

The maximum pressure was taken as 5 kilobars.

Several fracture criteria were used in evaluating the results.
In all cases, the fracture criteria predicted that the fracture would
not occur at the tip, but behind the tip in the region near the maximum
pressure of the pressure source. The orientation of the predicted !

fractures using all the failure criteria are off the fracture axis
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FIGURE 1 The pressure profile simulated within the
fracture surfaces. The dimensions of the
pressure source were used with a one
centimeter square Lagrangian grid.
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and thus would represent a branch fraccuring phenomenon, Because the
presently available codes cannot simulate a fracture that branches,
the fracture was programmed to propagate at a given velocity in a
Straight line. The results shown in this report are simulations of
single fractures driven at a constant speed.

Because branch fracturing was Predicted to occur and ap analysis
allowing a branch fracture to occur would be more physically correct,
further analysis of dynamic fracture phenomena was directed toward the
development of a dynamic fracture branching code. The initial formulation
has been completed and a Fortran IV version of the code has been
written. Fortran ""debugging" and checkout are not yet complete.

The geometry of the problems set up in the single fracture numerical

code is shown on Figure 2. The ratio of the distance from the fracture

free surface for both the analysis and the experiments is approximately
the same. The problem of a fracture Propagating near a free surface
was terminated before reflections from the far boundaries crossed the
fracture. One centimeter square grids were chosen for the calculation.
A total grid size of 40 x 40 was used. No damping was applied to the
calculation. The Lamé elastic constants were taken as A = g = 0.1
megabar implying Poissons ratio v = 0.25. The Lamé constants are low
for granite but Poissons ratio is approximately correct. The weaker
Lamé constants result in lower body wave speeds and thus permit longer
calculated time series before reflections from far boundaries can affect

the region of interest.
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C. EXPERIMENTAL PROCEDURE

For the experiments, three blocks of granite (3 feet by 3 feet by
~ 4 feet) were obtained from New Mexico Granite, a quarry in Las Vegas,
New Mexico. This granite appeared to be fairly uniform in texture and 5
there were no apparent open cracks in the blocks. The blocks do exhibit
some well healed joints or fractures. In some places, drill holes,
approximately l-inch in diameter penetrating a short distance into the
blocks, can be seen on the surfaces. Apparently these holes were drilled
to facilitate removal from the quarry area. The blocks were not polished
nor were the ends perpendicular to the 4-foot dimension sawed.

The compressional wave speed of the granite material was determined
from a core using a crystal driver and pickup. The nominal compressional
wave-speed was 4330 m/sec and increased to 4880 m/sec under an axial
stress of 0.265 kilobar. Very little hysteresis was noted in the wave
speeds between the loading and unloading phases of the test.

Before the explosives were applied to these three granite test
specimen, a phasing technique to slow the progress of the pressure wave
across the test specimen was developed. Various scrap granite and
in-place field rock on the New Mexico Tech test range were used during
this phase of the experimental program.- It was found that coiling the
detonating cord in a plane perpendicular to the surface of the test
specimen did not provide a sufficiently continuous pressure wave. This
geometry left a pocked appearance on the surface of the test blocks.

In addition, coiling the detonating cord reduced the amount of explosive
which could be placed on the surface and would not provide sufficient

energy on the surface. Of several other techniques tried, a method




where the explosive detonating cord was snaked flat against the surface
within a given width was chosen. It was found that by placing some
chips of lead between the loops of the snaked cord, the detonation
wave in the cord would not bridge between the loops. Figure 3 is

a photograph showing the snaked cord taped to the surface of a test
specimen. In addition, a greater part of the energy was transferred

to the surface and the noise was reduced by stemming with a small
amount of mud. Grooves were used in some experiments but comparison
of grooved and ungrooved rocks showed no observable difference between
the results.

To verify that the detonation wave did not bridge between the loops
and to get an accurate measurement.of the velocity of the phased pressure
source across the face of the rock, a velocity measuring system was
developed. The system uses ionization probes placed along the explosive
train. The circuit consists of a battery, a resistor, and a vrobe.

No current flows in the circuit until the detonation wave crosses the
probe. An oscilloscope connected across the resistor records the
voltage changes.

An example of the output of the timing system is displayed on Figure
4. The sweep is from left to right with a sweep rate of 100 usec/cm. One
ion probe was used for triggering the trace and another further down the
explosive train. The velocity is calculated from trigger initiation
to the probe ionization. The average velocity determined from this

record is approximately 6400 m/sec.
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FIGURE 3. Snaked explosive cord taped in place over a 0.61 meter length
previous to stemming with mud. The results of this experiment

are shown in Figure 16a.

FIGURE 4. Elapsed time output from oscilloscope. At 0.1 msec per
centimeter the display shows 0.38 msec between ionizations
on a 2.43-meter explosive cord. The velocity of detonation is

calculated as 6400 m/sec.




SECTION III

ANALYTICAL RESULTS

A. INTRODUCTION

Failure criteria, based on eithcr a maximum distortional stress or a
maximun tensional stress were used to determine the location and direction
of fracture. The simulations, using a moving pressure source located
just behind the fracture tip, indicated that a fracture would not continue
forward in a straight line from the tip. The failure criteria predicted
that (1) new fractures would occur behind the tip of the existing fracture
on the surfaces adjacent to the pressure source, and (2) the directions

of the new fracturing would not parallel the direction of the driven fracture.

B. COMPUTER SIMULATIONS

Because branch fracturing could not be handled with the existing
code, the fracturing was assumed to form and propagate in a straight
line at a prescribed velocity. A moving pressure source was positioned
just behind the moving fracture tip in the two-dimensional calculations.
Analysis of the constant-velocity, pressure-driven fractures were performed
for three fracture velocities; 0.25C;, 0.35C,, and 0.45C,. The
simulated fractures, which started at a free edge along a perpendicular
surface, were driven parallel and close to a free surface. Thus, the
effect of the free surface on the dynamic stress field in the vicinity
of the fracture tip was determined. The material simulated was assumed
to be completely relaxed without any ambient stresses present. Hence,

the stresses produced in the model were due to the propagating fracture
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tip and the moving pressure source within the fracture surfaces.
As a verification that the code was calculating the effect of the
pressure symmetrically on both fracture faces, a calculation was
performed with a pressure-driven fracture in the center of the
Lagrangian grid. This calculation was terminated before reflections from
the grid boundaries parallel to and beyond the fracture tip were reflected
back to the fracture. The grid center provided a comparison of the dynamic
stresses to show some of the changes due to the rarefaction surface.
Results of the computations are shown in Figures 5a to 15. Three
types of data are presented: (1) contour plots of lol - 02|, (2) contour
plots of dilatation, and (3) plots of the direction of stress tensor.
The contour plots of lol - 02| and dilatation are heavily shaded around
the fracture tip because of the difficulty of describing a surface within
the grid with the plotting routines. Interpretation of the contours can
be made only outside this heavily shaded area. Plots are presented
for two time slices for each of the three fracture velocities. The
time slices represent approximately equal times for each fracture velocity,
an early time slice with the shorter fracture lengths (Figure 5a through
9a) and a later time slice with the longer fracture lengths (Figure 9b
through 13b). Fracture lengths are shown on each plot. The x and y
coordinates on the plots have dimensions of centimeters and both the x and y
axes shown represent free surfaces for the calculations where the fracture
runs parallel to a nearby free surface (x-axis). For the grid center
fracture (Figures 14a, 14b, and 15), the y-axis shown represents a free

surface and the other surfaces are outside the area of the plot.
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Figures 5 through 15 inclusive show the characteristics of the dynamic
stress field for the three fracture velocities at the two time slices

for each fracture velocity. These plots present the stress field for the
fracture near the free surface. Figures 14a, 14b, and 15 show the stress
functions for the grid center fracture.

The principal axis of the stress tensor shews the direction of
maximum tensile stress. In general, it can be noted from the principal
axis plots (Figures 6a, 7b, 9a, 10b, 12a, 13b, and 15) that there is
a movement of material from the region in front of the tip toward the
tip. The free surfaces, both perpendicular and parallel, allow
material between the free surface and the fracture tip to move toward
the fracture tip. Except for the fracture velocity of 0.45C, the
orientation of the principal axis indicates that the fracture could
travel forward from the tip (Figures 6a, 7b, 10b, and 12a). However,
the distortion is much greater at the sides of the fracture adjacent to
the pressure source [0, - 0,| than at the tip (Figures 5a, 6b, 9b and
11a). The orientation of the principal axis ahead of the fracture tip
for a simulated fracture with a velocity of 0.45C; is not favorable to
forward propagation of the fracture (Figures 9a and 13b). The maximum
axis predicts that fractures in front of the tip would be perpendicular
to the tip. The time slices for the longer fractures at the lower
velocities 0.25C; and 0.35C, indicate that the fractures extending
forward from the tip would tend to turn toward the free surface
(Figures 10b and 12a). For the fracture velocities 0.25C; and 0.35C,,
the orientation of the principal axes in the material adjacent to the pressure

source appears to be controlled by the pressure source. Moreover, examination
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of the orientations of the principal axes adjacent to the pressure source
shows approximate symmetry about the pressure source, i.e., the free
surface has little effect (Figures 6a, 7b, 10b, and 12a).

The contour plots of distortion Iol - 02| show that the distortion
is largely asymmetrical due to the closeness of the free surface on one
side of the fracture. In addition, comparison of the distortional
contours for the 0.35C, fracture velocity, between the grid center and
nearby free surface fractures (Figures 6b, and 14a), shows that the
distortion on the side of the fracture away from the free surface is not
greatly affected by the existence of the free surface. The maximum
distortion occurs in lobes originating from the fracture faces adjacent to
the pressure source (Figures 5a, 6b, 8a, 9b, 1la, and 12b). The maximum
magnitude on both sides of the fracture is approximately equal being slightly
greater on the side of the fracture adjacent to the free surface.

In general, for all three fracture velocities, the lobe of distortion on
the side of the fracture away from the free surface has a larger areal
extent than the opposite lobe. Apparently the free surface reduces

the size of the distortional lobe but does not effect its magnitude
greatly. The distortional contours show a small lobe ahead of the
fracture tip, but its magnitude is smaller than that of the side lobes.
There is a tendency for the distortional lobe at the tip to be drawn
toward the free surface. Behind the crack tip the distortion expands

at the dilatational wave speed.

The dilatational contours, in general, show a tendency for the free
surface to relax the dilatation. The maximum dilatation occurs just

ahead of the fracture tip while two small compressional lobes occur

12
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FIGURE 15

o
Y

The maximum Principal tensor axes for the grid

center fracture at the early time slice and a

fracture velocity of 0,35C,;.

The fracture

length is 4 centimeters and the x and y axes
on the plct are the spatial coordinates in

centimeters.

The fracture is shown as the

rough line and the position of the Pressure
source is shown by the double lines, one on
each side of the fracture near the tip.
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behind the tip adjacent to the pressure source (Figures 5b, 7a, 8b, 10a,
11b, and 13a). The compressional lobe away from the free surface has a
larger areal extent than the one toward the free surface. The two slower
velocities result in the dilatational lobe ahead of the fracture having

a larger areal extent than does the fracture of velocity 0.45C;. All

the later time slice contour plots of dilatation (Figures 10a, 11b, and 13a)
show a dilatation (at about y = 15) from a Rayleigh wave travelling along

the free surface.

C. SUMMARY AND CONCLUSIONS

The results indicate that a pressure-driven fracture in an ideal,
homogeneous, isotropic material at velocities of 0.45C; is not
physically possible. At this velocity, the orientation of the maximum
tensile stress ahead of the fracture tip indicates that new fractures in
this region would occur perpendicular to the existing fracture. This
agrees with the results of the research shown in Reference 1. It is
possible but not probable that this result could be changed by the
inclusion of branch fractures.

It is not physically realistic to define fracturing to occur in a
straight line at a constant velocity. To do so implies that the
stresses in the region of the fracture tip are ignored. However, the
analysis had to be applied in this manner in the absence of more sophisticated
fracture formulations. The analysis was performed to show the character
of the elastic field in the vicinity of the fracture and the moving
pressure source. The effect of the nearby free surface on the dynamic

elastic field was also obtained in the results.
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The tree surface parallel to the fracture tends to relax the
dilatation resulting from the moving fracture and pressure. This can
be noted by the fact that the dilatational lobes are skewed away from
the free surface and the compression lobe is drawn toward the surface.
Since the maximum magnitude of the distortion on both sides of the
moving fracture behind the tip are approximately equal, apparently
the distortion is created and held by the pressure source and the
moving fracture tip.

The plots of the orientation of the principal axes indicate that if

maximum tensile stress controls the direction of fracture ahead of the moving

fracture tip, the fractures would turn toward the nearby free surface.
In addition, the plots indicate that the orientation of the principal axes
on each side of the fracture is controlled by the pressure source. Since
the distortion is also marimum in these regions, fractures created near
the pressure source would iritially be symmetric and away from the
original fracture. The free surface would not affect the initial
orientation of the branch fractures. Since an electron beam has a
finite diameter on the surface, any branch fracture originating in
the beam areas would also be pressurized. The pressurization of
these branch fractures would remove the parallel tensile field in
the vicinity of the forward tip. If the orientation of the branch
fractures is sufficiently symmetric, then it may be possible to drive
a fracture tip parallel to a free surface. Hence, with sufficient beam
power, a mining application can be envisioned.

It should be restated that these tentative conclusions are drawn

from a two-dimensional analysis.

25




SECTION 1V

EXPERIMENTAL RESULTS

A. DESCRIPTION OF EXPERIMENTS

More than 50 individual experiments were performed previous to 1
those performed on the three large sawed granite blocks. These experiments
were used to establish the amount of explosive necessary to initiate
a fracture and to establish the best method to slow the linear velocity
of detonation of the explosive cord. All experiments performed were
passive in that no dynamic instrumentation was used on the test specimen.
Interpretations of the test were made through observation of fractures
after the test. Within the observational capability of the experimental
method used, it was determined that the amount of explosive per unit
length on the test specimen necessary to initiate a fracture was about
the same as that required to propagate the fracture.

A major factor in causing fracture to occur in a specimen is the
ability tc transfer the available energy of the detonation and the
explosive gases to the specimen in an orientation which will result
in the desired fracture. The cord had to be taped to the surface
of the test specimen to hold it in its snaked configuration and some
open space existed between the cord and buffers and the stemming material.
Obtaining the same amount of energy coupling to the specimen for different
experiments was difficult because of the texture of the stemming material
used and the relative amount of water contained i.: the mud. The method
of snaking the cord was found to be the most feasible way of slowing
the linear velocity of propagation of detonation to simulate a high-power

electron beam moving along a hard rock surface at fracture velocity.
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The experiments using a slower linear velocity were limited to
certain velocities due to the size of cord available. First, to allow
legitimate comparisons, the cord was snaked at a ratio of three {(four
or five) units of cord per linear unit. Then three (four or five) cords
were placed straight beside each other to supply the same energy-density
per unit length so a2 comparison could be made between experiments having
the two velocities. An alternate method for obtaining the higher
velocity at the same energy-density per unit length was achieved by
allowing the detonation wave to bridge in the snaked cord. The latter
method produced about the same damage as when the cords were placed
straight beside each other.

Figures 16a through 23b show the results of detonating PETN
Primacord over a length of 0.6 meters. Figures 16a, 17a, and 18a show
the damage produced by about 2000 grains per meter (600 grains per foot:
of explosive, placed along 2 0.61-meter length, with the velocity of
fracture propagation (V) about 2100 meters per second. The cord was
snaked in a width less than .05 meter and centered 4 inches (0.10 meter)
from the edge. The pieces broken from the specimens, or those indicated
by visible cracks resemble each other and appear triangular in cross
section and about as long as the length of the snaked cord (0.6 meter).

Figure 16b, 17b, and 18b show the damage produced by the same
explosive density as for the previous figures but the velocity of
propagation here is that of the ’xplosive cord (about 6,400 meters per
second). The propagaticn velocity is supersonic in the test specimen.

Figure 16b shows ihe characteristic width of the spallation slabs which
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FIGURE 16a. Explosive density was 2000 grains/meter with V equal
to 2100 meters/second.

FIGURE 16b. Explosive density was 2000 grains/meter with V equal
to 6400 meters/second.
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FIGURE 17a. Explosive density was 2000 grains/meter with V equal
to 2100 meters/second.

FIGURE 17b. Explosive density was 2000 grains/meter with V equal
to 6400 meters/second.
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FIGURE 18a. Explosive density was 2000 grains/meter with V equal
to 2100 meters/second.
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FIGURE 18b. Explosive density was 2000 grains/meter with V equal
to 6400 mcters/second.
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is about the same width as the explosive used. Figures 17b and 18b

show spallation damage caused by supersonic detonation velocities. Figure
18b shows a lot of separation, but much of it was due to imperfections in
the specimen which were visible (as discolorations along the fracture
surfaces) after breaking.

Figures 19a, 20a, and 21a show the damage produced by a propagation
velocity of 1600 meters per second and an explosive densicy of 2600
grains per meter. Comparison of these three figures with Figures 16a,
17a, and 18a suggests that a higher explosive density and a slower
propagation velocity does not increase the damage to the specimens.
Figure 20a shows hardly any damage.

The damage shown in Figures 19b and 20b was caused by an explosive
density of 2600 grains per meter and a propagation velocity of 6400
meters/second. The experiment shown in Figure 19b can be compared with
the one Figure 16b (same velocity but explosive density of 2000 grains
per meter). There is little difference in the damage produced by these
two shots.  Figure 20b indicates the supersonic detonation can do more
damage than the subsonic detonation on the same block (Figure 20a).

Figure 21b shows four independent detonations at 6400 meters/second
with explosive density of 2600 grains per meter. The side shown in
Figure 20b is »pposite the side of the block used in the experiments
shown on Figures 16a, 16b, 19a, and 19b. Notice the large chunks
broken out of the near corners. We suspect the fractures that created
these 'arge pieces of granite were partially formed during the previous
shots. Also some evidence of pre-existing fractures was found. The

four shots shown all exhibit a deep spallation.
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FIGURE 19a. Explosive density was 2600 grains/meter with V equal
to 1600 meters/second.

Reproduced from
best available copy.

FIGURE 19b. Explosive density was 2600 grains/meter with V equal
to 6400 meters/second.
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FIGURE 20a.
to 1600 meters/second.
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FIGURE 20b. Explosive density was 2600 grains/meter with V equal

to 6400 meters/second.
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FIGURE 2la. Explosive density was 2600 grains/meter with V equal
to 1600 meters/second.

FIGURE 21b. Explosive density was 2600 grains/meter with V equal
to 6400 meters/second.
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FIGURE 22a.
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Explosive dentity was 1600 grains/meter with V equal
to 5000 meters/second.
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FIGURE 2Zb.

Explosive density was 1600 grains/meter with V equdl
to 1300 meters/second.
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FIGURE 23a.

Explosive density was 1600 grains/heter with V equal
to 1300 meters/second.

FIGURE 23b.

Explosive density was 1600 grains/meter with V equal
to 1300 meters/second.
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Figure 222 illustrates the results of a shot made with an energy-
density of 1600 grains per meter. The cord was snaked but enough
bridging did occur to cause the average detonation velocity to become
greater than the velocity of P-waves in the specimen, hence the spallation.

Figures 22b, 23a, and 23b shew results of experiments using a
detonation velocity of 1300 meters per second at an energy-density of
1600 grains per meter. Figure 23a shows no visible damage while
Figures'22b and 23b show a large piece of the specimen broken from
the corners at which the detonations were initiated. Again we caution
that some of this fracturing may have occurred from experiments performed
on the other side of the block where higher explosive densities were
used. Note the pieces that were broken off at supersonic detonation
velocities (Figure 21b) were not of the tetrahedral shape of those
shown in Figures 22b and 23b. Also no discolorations indicating
pre-existing fractures were evident in these two experiments. The
broken piece of granite shown in Figure 22b and the block shown in
Figure 23b both exhibit fractures which could be the branch fractures

described in the theoretical part of this study.

B. DISCUSSION AND CONCLUSIONS OF EXPERIMENTS

Very little research has been conducted on the creation of fractures
by placing explosive cord on a hard rock surface. Some published
literature does contain analytical and experimental results for
explosive geometries quite different than those used in this study.

Previous investigators (References 9, 10) have experimentally studied
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the effects of different types of explosives placed internally in

granite. Some of thr earliest analytical work was by Sharpe (Reference
11) who studied the . -:tic waves produced from an internal pressure
source on a spherical cavity. This is the simplest geometry available ¢

(one-dimensional) for analysis if the mechanisms of explosive loading
on the internal surface are neglected. Subsequent experimentalists
(Reference 12) found that shock loading phenomena must be taken into
account on the explosive-rock interface. In addition, elastic wave
observations (Reference 13) indicated the ratio of the rock impedance
to the explosive impedance (product of the density and detonation
velocity) was a governing parameter in rock breakage applications.
Although these studies involved internally placed explosives, some of {
the results could be applicable to the methods used in our analysis.
Duvall and Atchison (Reference 14) describe the explosive breaking
of rock as two mechanisms. In‘the first mechanism, the rock near the
detonation point is crushed by the high pressure of the explosive
gases. Their analysis was for explosive contained in a borehole and
crushing would be expected to occur. Detonation of explosive on a
free surface exhibits only a small amount of crushing. In the second
mechanism, the compressional wave is reflected at a free boundary as
a tension wave and rock breakage occurs as tensile failure. The
conclusions of their study indicate that the position and oéientation

of a dynamic fracture would depend entirely upon the free boundaries

of the specimen. Some results of this research do not appear to agree N

with their conclusions.
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Many of the experiments performed Yor this research resulted in
breaking directly under the line where the cord was detonated. This
result indicates that the free surfaces do not geometrically define
fracture in all cases. We interpreted our results as an indication
that the ambient stress field in the specimen may have some effect on
the geometry of the fracture, and that the fracture was driven directly
from the explosive source rather than from secondary effects.

In nearly all cases, fracture occurred directly below the explosive.
However, the extent of the fracturing was difficult to observe. In many
experiments explosive cord was detonated near an edge and fractures were
not observed below the detonation line. However, additional detonations
at a similar distance from the previous shots caused observable fractures

to appear where the previous shots were made.

39

-~y -




bt S S e e 5B, i e Sy 8,

SECTION V

SUMMARY

Difficulties in evaluating the results of this research arise
because of the differences between the analyses and experiments performed.
The analyses were for a two-dimensional block with the moving source
placed within the fracture surfaces. The experiments had a three-
dimensional geometry with the source placed on a free surface near an

edge. The fact that the explosive cord used in the experiments was

placed on a free surface makes a direct quantitative comparison between
the theory and experiment difficult. Also in the experiments, the
explosive energy coupled to the specimen was unknown and is of major
importance in breaking rock.

There can be serious questions raised as to whether an electron
beam can be simulated by using an explosive detonating cord because of
the detonation shock from the explosive. Further, the energy from
an electron beam is deposited a few crystal depths into the surface of
a specimen in comparison wiith the energy from an explosive which is
coupled into the surface through the detonation shock and the residual
gas pressure after the shock. The impedance characteristics of the
detonation products and the test material have to bs considered to
understand the coupling of the explosive energy to the test specimen.
On the other hand, the thermodynamic properties of the test material
should be considered to understand the effect of the electron beam.
The deposition of the beam energy, if large enough, will result in an
ablation of the test material with the resultant ablation pressure

being the working mechanism to drive the fracture.
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The characteristic pressure width resulting from the detonation
of the explosive cord was § cm; whereas, the width of the electron beam
applied within the fracture surfaces in the analyses was less than 1 cm.
Also the pressure wave in the experimeints was mainly coupled downward
into the face, while the pressure in the analyses was applied outward
against the fracture faces.

Despite these difficulties, some similarities between the
experiments and the analyses appear to exist. There is evidence
from some of the experiments that branch-type fractures have
occurred. The relaxation to the free surface from which the fracture
was started (seen in the tensor axis plots, Figures 6a, 70, (9a), 10b,
12a, and 13b) shows up as severe Jamage on the same face in the
experiments. The cumulative damage belcw. the line where the
explosive was detonated on the surface of the t2st specimen is an
indication that a pressure can result in some fracturing near the
pressure source.

The analyses indicated that the pressure sour.e, if appiied
within the fracture surfaces, can "hold" the stress orientation such
that the orientation of branch fractures would be symmetrical. Since
the distortion is large in the region of the pressure source, branch
fractures will occur and pressurization of t - .ranch fractures
could reduce the effects of the free surface so that a fracture

may be driven narallel to the free surface.
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